TitleMolecular engineering of glycosaminoglycan chemistry for biomolecule delivery.
Publication TypeJournal Article
Year of Publication2014
AuthorsMiller, T, Goude, MC, McDevitt, TC, Temenoff, JS
JournalActa Biomaterialia
Date PublishedApril 2014
ISSN1878-7568
KeywordsAnimals, Bioengineering, Drug Delivery Systems, Glycosaminoglycans, Humans, Protein Binding
Abstract

Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides that interact with a variety of positively charged growth factors. In this review article the effects of engineering GAG chemistry for molecular delivery applications in regenerative medicine are presented. Three major areas of focus at the structure-function-property interface are discussed: (1) macromolecular properties of GAGs; (2) effects of chemical modifications on protein binding; (3) degradation mechanisms of GAGs. GAG-protein interactions can be based on: (1) GAG sulfation pattern; (2) GAG carbohydrate conformation; (3) GAG polyelectrolyte behavior. Chemical modifications of GAGs, which are commonly performed to engineer molecular delivery systems, affect protein binding and are highly dependent on the site of modification on the GAG molecules. The rate and mode of degradation can determine the release of molecules as well as the length of GAG fragments to which the cargo is electrostatically coupled and eventually released from the delivery system. Overall, GAG-based polymers are a versatile biomaterial platform offering novel means to engineer molecular delivery systems with a high degree of control in order to better treat a range of degenerated or injured tissues.

DOI10.1016/j.actbio.2013.09.039
Alternate JournalActa Biomater
PubMed ID24121191
PubMed Central IDPMC3960340
Grant ListR01 AR062006 / AR / NIAMS NIH HHS / United States
R01 AR062006 / AR / NIAMS NIH HHS / United States