TitleSpatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair.
Publication TypeJournal Article
Year of Publication2003
AuthorsMcDevitt, TC, Woodhouse, KA, Hauschka, SD, Murry, CE, Stayton, PS
JournalJournal of Biomedical Materials Research Part A
Date PublishedSeptember 2003
ISSN1549-3296
KeywordsAnimals, Biocompatible Materials, Biodegradation, Environmental, Cell Adhesion, Microscopy, Electron, Scanning, Myocardium, Polyurethanes, Tissue Engineering
Abstract

Tissue engineering constructs should match the physical and mechanical properties of the native tissue. This implies that pliable scaffolds might be better suited for soft-tissue applications than rigid polymeric materials. In this study, we examined spatially organized cardiomyocyte cultures on biodegradable, elastomeric polyurethane films patterned by microcontact printing of laminin lanes. The resulting cardiomyocyte patterns on polyurethane displayed a similar morphology to those previously achieved for up to 7-10 days on other substrates, such as polystyrene dishes. However, the integrity of the cardiomyocyte patterns on thin, spin-cast or solvent-cast polyurethane films was retained for up to 4 weeks in culture. When additional cardiomyocytes (labeled with Cell Tracker reagents) were seeded onto the patterned cultures, secondary and tertiary cell populations aligned between and on top of the primary patterned cells to form a multilayered, organized tissue construct approximately 2-3 cell layers thick. In addition, dense, highly aligned monolayers of patterned cardiomyocytes were able to contract the thin, solvent-cast polyurethane films. These results indicate that elastomeric, biodegradable polyurethane films can serve as an appropriate scaffold material to support stably the engineering of spatially organized layers of cardiomyocytes in vitro. This approach may serve as a novel method for transplantation of organized cardiac tissue constructs to the heart for myocardial repair.

DOI10.1002/jbm.a.10504
Alternate JournalJ Biomed Mater Res A
PubMed ID12918042
Grant ListHL64387 / HL / NHLBI NIH HHS / United States
HL61553 / HL / NHLBI NIH HHS / United States
HL03174 / HL / NHLBI NIH HHS / United States